Total Variation-Based Distributed Kalman Filtering for Resiliency Against Byzantines

Ashkan Moradi*, Naveen K.D. Venkategowda, Stefan Werner

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

7 Sitaatiot (Scopus)

Abstrakti

This article proposes a distributed Kalman filter (DKF) with enhanced robustness against Byzantine adversaries. A Byzantine agent is a legitimate network agent that, unlike an honest agent, manipulates information before sharing it with neighbors to impair the overall system performance. In contrast to the literature, the DKF is modeled as a distributed optimization problem where resiliency against Byzantine agents is accomplished by employing a total variation (TV) penalty term. We utilize a distributed subgradient algorithm to compute the state estimate and error covariance matrix updates of the DKF. Additionally, we prove that the proposed suboptimal solution converges to a neighborhood of the optimal centralized solution of the KF with a bounded radius when Byzantine agents are present. Numerical simulations corroborate the theoretical findings and demonstrate the robustness of the proposed DKF against Byzantine attacks.

AlkuperäiskieliEnglanti
Sivut4228-4238
Sivumäärä11
JulkaisuIEEE Sensors Journal
Vuosikerta23
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 15 helmik. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Total Variation-Based Distributed Kalman Filtering for Resiliency Against Byzantines'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä