Projekteja vuodessa
Abstrakti
Spectral functions of non-Hermitian Hamiltonians can reveal the existence of topologically nontrivial line gaps and the associated topological edge modes. However, the computation of spectral functions in a non-Hermitian many-body system remains an open challenge. Here, we put forward a numerical approach to compute spectral functions of a non-Hermitian many-body Hamiltonian based on the kernel polynomial method and the matrix-product state formalism. We show that the local spectral functions computed with our algorithm reveal topological spin excitations in a non-Hermitian spin model, faithfully reflecting the nontrivial line gap topology in a many-body model. We further show that the algorithm works in the presence of the non-Hermitian skin effect. Our method offers an efficient way to compute local spectral functions in non-Hermitian many-body systems with tensor networks, allowing us to characterize line gap topology in non-Hermitian quantum many-body models.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 100401 |
Sivut | 1-7 |
Sivumäärä | 7 |
Julkaisu | Physical Review Letters |
Vuosikerta | 130 |
Numero | 10 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 7 maalisk. 2023 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Topological Spin Excitations in Non-Hermitian Spin Chains with a Generalized Kernel Polynomial Algorithm'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
-
-: Lado Jose AT-kulut
Lado, J., Hyart, T., Kumar, P. & Koch, R.
01/09/2020 → 31/08/2023
Projekti: Academy of Finland: Other research funding