Projekteja vuodessa
Abstrakti
Topological Neural Networks (TNNs) incorporate higher-order relational information beyond pairwise interactions, enabling richer representations than Graph Neural Networks (GNNs). Concurrently, topological descriptors based on persistent homology (PH) are being increasingly employed to augment the GNNs. We investigate the benefits of integrating these two paradigms. Specifically, we introduce TopNets as a broad framework that subsumes and unifies various methods in the intersection of GNNs/TNNs and PH such as (generalizations of) RePHINE and TOGL. TopNets can also be readily adapted to handle (symmetries in) geometric complexes, extending the scope of TNNs and PH to spatial settings. Theoretically, we show that PH descriptors can provably enhance the expressivity of simplicial message-passing networks. Empirically, (continuous and E(n)-equivariant extensions of) TopNets achieve strong performance across diverse tasks, including antibody design, molecular dynamics simulation, and drug property prediction.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 49388-49407 |
Sivumäärä | 20 |
Julkaisu | Proceedings of Machine Learning Research |
Vuosikerta | 235 |
Tila | Julkaistu - 2024 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Machine Learning - Vienna, Itävalta Kesto: 21 heinäk. 2024 → 27 heinäk. 2024 Konferenssinumero: 41 |
Sormenjälki
Sukella tutkimusaiheisiin 'Topological Neural Networks go Persistent, Equivariant, and Continuous'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.-
HEALED/Garg: Human-steered next-generation machine learning for reviving drug design
Garg, V. (Vastuullinen tutkija), Laabid, N. (Projektin jäsen) & Verma, Y. (Projektin jäsen)
01/09/2021 → 31/08/2025
Projekti: Academy of Finland: Other research funding
-
-: Finnish Center for Artificial Intelligence
Kaski, S. (Vastuullinen tutkija)
01/01/2019 → 31/12/2022
Projekti: Academy of Finland: Other research funding