Topological Neural Networks go Persistent, Equivariant, and Continuous

Yogesh Verma*, Amauri H. Souza, Vikas Garg

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliConference articleScientificvertaisarvioitu

33 Lataukset (Pure)

Abstrakti

Topological Neural Networks (TNNs) incorporate higher-order relational information beyond pairwise interactions, enabling richer representations than Graph Neural Networks (GNNs). Concurrently, topological descriptors based on persistent homology (PH) are being increasingly employed to augment the GNNs. We investigate the benefits of integrating these two paradigms. Specifically, we introduce TopNets as a broad framework that subsumes and unifies various methods in the intersection of GNNs/TNNs and PH such as (generalizations of) RePHINE and TOGL. TopNets can also be readily adapted to handle (symmetries in) geometric complexes, extending the scope of TNNs and PH to spatial settings. Theoretically, we show that PH descriptors can provably enhance the expressivity of simplicial message-passing networks. Empirically, (continuous and E(n)-equivariant extensions of) TopNets achieve strong performance across diverse tasks, including antibody design, molecular dynamics simulation, and drug property prediction.

AlkuperäiskieliEnglanti
Sivut49388-49407
Sivumäärä20
JulkaisuProceedings of Machine Learning Research
Vuosikerta235
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Machine Learning - Vienna, Itävalta
Kesto: 21 heinäk. 202427 heinäk. 2024
Konferenssinumero: 41

Sormenjälki

Sukella tutkimusaiheisiin 'Topological Neural Networks go Persistent, Equivariant, and Continuous'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä