Time-Varying Optimization with Optimal Parametric Functions

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

In this paper, we consider a formulation of nonlinear constrained optimization problems. We reformulate it as a time-varying optimization using continuous-time parametric functions and derive a dynamical system for tracking the optimal solution. We then re-parameterize the dynamical system to express it based on a linear combination of the parametric functions. Calculus of variations is applied to optimize the parametric functions, so that the optimality distance of the solution is minimized. Accordingly, an iterative dynamic algorithm, named as OP-TVO, is devised to find the solution with an efficient convergence rate. We benchmark the performance of the proposed algorithm with the prediction-correction method (PCM) from the optimality and computational complexity point-of-views. The results show that OP-TVO can compete with PCM for the optimization problem of interest, which indicates it can be a promising approach to replace PCM for some time-varying optimization problems. Furthermore, this work provides a novel paradigm for solving parametric dynamical system.
AlkuperäiskieliEnglanti
Otsikko2023 62nd IEEE Conference on Decision and Control (CDC)
KustantajaIEEE
Sivut2300-2305
Sivumäärä6
ISBN (painettu)979-8-3503-0125-0
DOI - pysyväislinkit
TilaJulkaistu - 15 jouluk. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE Conference on Decision and Control - Marina Bay Sands, Singapore, Singapore
Kesto: 13 jouluk. 202315 jouluk. 2023
Konferenssinumero: 62
https://cdc2023.ieeecss.org/

Julkaisusarja

NimiProceedings of the IEEE Conference on Decision & Control
ISSN (elektroninen)2576-2370

Conference

ConferenceIEEE Conference on Decision and Control
LyhennettäCDC
Maa/AlueSingapore
KaupunkiSingapore
Ajanjakso13/12/202315/12/2023
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Time-Varying Optimization with Optimal Parametric Functions'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä