Abstrakti
In this study, we propose a decision tree classifier of heart sound signals. We determined repetitive fundamental heart sound segments based on adaptive similarity value clusterization of the sound signal, and we created a set of filters for decision tree parametrization. Using the filters together with inter-segment timings, we created three sets of markers: a set utilizing both S1 and S2 identification, a set where only one segment was identified, and a set without any identified segment. An individual classification tree was trained for each marker set. As a result, our classifier attained sensitivity (Se) of 0.66 and specificity (Sp) of 0.92 and overall score of 0.79 for a hidden random (revised) subset.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Computing in Cardiology Conference, CinC 2016 |
Kustantaja | IEEE |
Sivut | 577-580 |
Sivumäärä | 4 |
Vuosikerta | 43 |
ISBN (elektroninen) | 9781509008964 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 maalisk. 2016 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Computing in Cardiology Conference - Vancouver, Kanada Kesto: 11 syysk. 2016 → 14 syysk. 2016 Konferenssinumero: 43 |
Conference
Conference | Computing in Cardiology Conference |
---|---|
Lyhennettä | CinC |
Maa/Alue | Kanada |
Kaupunki | Vancouver |
Ajanjakso | 11/09/2016 → 14/09/2016 |