Thin and deep Gaussian processes

Daniel Augusto de Souza*, Alexander Nikitin, Ti John, Magnus Ross, Mauricio A. Alvarez, Marc Peter Deisenroth, Joao Paulo Pordeus Gomes, Diego Parente Paiva Mesquita, Cesar Lincoln Mattos

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Gaussian processes (GPs) can provide a principled approach to uncertainty quantification with easy-to-interpret kernel hyperparameters, such as the lengthscale, which controls the correlation distance of function values. However, selecting an appropriate kernel can be challenging. Deep GPs avoid manual kernel engineering by successively parameterizing kernels with GP layers, allowing them to learn low-dimensional embeddings of the inputs that explain the output data. Following the architecture of deep neural networks, the most common deep GPs warp the input space layer-by-layer but lose all the interpretability of shallow GPs. An alternative construction is to successively parameterize the lengthscale of a kernel, improving the interpretability but ultimately giving away the notion of learning lower-dimensional embeddings. Unfortunately, both methods are susceptible to particular pathologies which may hinder fitting and limit their interpretability. This work proposes a novel synthesis of both previous approaches: Thin and Deep GP (TDGP). Each TDGP layer defines locally linear transformations of the original input data maintaining the concept of latent embeddings while also retaining the interpretation of lengthscales of a kernel. Moreover, unlike the prior solutions, TDGP induces non-pathological manifolds that admit learning lower-dimensional representations. We show with theoretical and experimental results that i) TDGP is, unlike previous models, tailored to specifically discover lower-dimensional manifolds in the input data, ii) TDGP behaves well when increasing the number of layers, and iii) TDGP performs well in standard benchmark datasets.
AlkuperäiskieliEnglanti
OtsikkoNeurIPS 2023
TilaHyväksytty/In press - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaConference on Neural Information Processing Systems - Ernest N. Morial Convention Center, New Orleans, Yhdysvallat
Kesto: 10 jouluk. 202316 jouluk. 2023
Konferenssinumero: 37
https://nips.cc/

Conference

ConferenceConference on Neural Information Processing Systems
LyhennettäNeurIPS
Maa/AlueYhdysvallat
KaupunkiNew Orleans
Ajanjakso10/12/202316/12/2023
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Thin and deep Gaussian processes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä