Thermal-Error Regime in High-Accuracy Gigahertz Single-Electron Pumping

Tutkimustuotos: Lehtiartikkeli


  • R. Zhao
  • A. Rossi
  • S. P. Giblin
  • J. D. Fletcher
  • F. E. Hudson
  • Mikko Möttönen

  • M. Kataoka
  • A. S. Dzurak


  • University of New South Wales
  • University of Cambridge
  • National Physical Laboratory


Single-electron pumps based on semiconductor quantum dots are promising candidates for the emerging quantum standard of electrical current. They can transfer discrete charges with part-per-million (ppm) precision in nanosecond time scales. Here, we employ a metal-oxide-semiconductor silicon quantum dot to experimentally demonstrate high-accuracy gigahertz single-electron pumping in the regime where the number of electrons trapped in the dot is determined by the thermal distribution in the reservoir leads. In a measurement with traceability to primary voltage and resistance standards, the averaged pump current over the quantized plateau, driven by a 1-GHz sinusoidal wave in the absence of a magnetic field, is equal to the ideal value of ef within a measurement uncertainty as low as 0.27 ppm.


JulkaisuPhysical Review Applied
TilaJulkaistu - 30 lokakuuta 2017
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Lataa tilasto

Ei tietoja saatavilla

ID: 16193395