Thermal performance analysis of a direct-heated recompression supercritical carbon dioxide Brayton cycle using solar concentrators

Tutkimustuotos: Lehtiartikkeli

Tutkijat

Organisaatiot

  • Nanjing Institute of Technology
  • Southeast University

Kuvaus

In this study, a direct recompression supercritical CO2 Brayton cycle, using parabolic trough solar concentrators (PTC), is developed and analyzed employing a new simulation model. The effects of variations in operating conditions and parameters on the performance of the s-CO2 Brayton cycle are investigated, also under varying weather conditions. The results indicate that the efficiency of the s-CO2 Brayton cycle is mainly affected by the compressor outlet pressure, turbine inlet temperature and cooling temperature: Increasing the turbine inlet pressure reduces the efficiency of the cycle and also requires changing the split fraction, where increasing the turbine inlet temperature increases the efficiency, but has a very small effect on the split fraction. At the critical cooling temperature point (31.25 C), the cycle efficiency reaches a maximum value of 0.4, but drops after this point. In optimal conditions, a cycle efficiency well above 0.4 is possible. The maximum system efficiency with the PTCs remains slightly below this value as the performance of the whole system is also affected by the solar tracking method used, the season and the incidence angle of the solar beam radiation which directly affects the efficiency of the concentrator. The choice of the tracking mode causes major temporal variations in the output of the cycle, which emphasis the role of an integrated TES with the s-CO2 Brayton cycle to provide dispatchable power.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli4358
Sivut1-17
Sivumäärä17
JulkaisuEnergies
Vuosikerta12
Numero22
TilaJulkaistu - 15 marraskuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Lataa tilasto

Ei tietoja saatavilla

ID: 39587771