There is no McLaughlin geometry

Patric R.J. Östergård, Leonard H. Soicher

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

Abstrakti

We determine that there is no partial geometry G with parameters (s,t,α)=(4,27,2). The existence of such a geometry has been a challenging open problem of interest to researchers for almost 40 years. The particular interest in G is due to the fact that it would have the exceptional McLaughlin graph as its point graph. Our proof makes extensive use of symmetry and high-performance distributed computing, and details of our techniques and checks are provided. One outcome of our work is to show that a pseudogeometric strongly regular graph achieving equality in the Krein bound need not be the point graph of any partial geometry.

AlkuperäiskieliEnglanti
Sivut27-41
Sivumäärä15
JulkaisuJournal of Combinatorial Theory. Series A
Vuosikerta155
DOI - pysyväislinkit
TilaJulkaistu - 1 huhtikuuta 2018
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'There is no McLaughlin geometry'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Siteeraa tätä