Abstrakti
A theory of nonuniform liquids is presented which is based on the Yvon-Born-Green equation for the one-particle density and the Ornstein-Zernike equation of an inhomogeneous system. The necessary closure is effected by exploiting the solution of a modified hypernetted-chain equation and making a local approximation on the (highly universal) bridge function. The theory is successfully applied to model problems that have also been studied by direct-simulation methods. A brief generalization to quantum liquids is also given.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 560-571 |
Sivumäärä | 12 |
Julkaisu | Physical Review A |
Vuosikerta | 24 |
Numero | 1 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 heinäkuuta 1981 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |