Aktiviteetteja vuodessa
Abstrakti
On the one hand, we investigate the existence and pathwise uniqueness of a nonnegative martingale solution to the stochastic evolution system of nonlinear advection-diffusion equations proposed by Klausmeier with Gaussian multiplicative noise. On the other hand, we present and verify a general stochastic version of the Schauder-Tychonoff fixed point theorem, as its application is an essential step for showing existence of the solution to the stochastic Klausmeier system. The analysis of the system is based both on variational and semigroup techniques. We also discuss additional regularity properties of the solution.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 185-246 |
Julkaisu | Potential Analysis |
Vuosikerta | 61 |
Numero | 2 |
Varhainen verkossa julkaisun päivämäärä | 13 lokak. 2023 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 elok. 2024 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'The Stochastic Klausmeier System and A Stochastic Schauder-Tychonoff Type Theorem'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Aktiviteetit
- 1 Kutsuttu akateeminen esitelmä
-
The stochastic Klausmeier system and a stochastic Schauder-Tychonoff type theorem
Jonas Tölle (Kutsuttu puhuja)
29 marrask. 2022Aktiviteetti: Kutsuttu akateeminen esitelmä