Abstrakti
This paper proposes a novel bi-level strategic energy trading framework to minimize the operation cost of the distribution network (DN) interacting with peer-to-peer (P2P) transactive energy hubs with electric vehicles. A distribution system operator at the upper level minimizes its total cost from purchasing electricity in the wholesale market, generating with its own microturbines, and selling electricity to the energy hubs. Each transactive energy hub at the lower level reacts to the offer price received from the upper level, interacting with the other energy hubs. Each energy hub has a parking lot to harvest the benefit from asynchronous storage of electricity in other energy hubs stemming from the difference between the arrival or departure times of the electric vehicles. A single-leader multi-follower game approach is developed to model the DN-energy hubs game structure. Then, an iterative model is proposed to find the equilibrium point between the leader and the followers, while the distributed problem of the interaction between the followers at the LL is solved by the Alternating Direction Method of Multipliers (ADMM). Numerical results for the IEEE 33-bus test system with two energy hubs show the effectiveness of the proposed transactive model between the energy hubs and the DN.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 119267 |
Julkaisu | Applied Energy |
Vuosikerta | 319 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 elok. 2022 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |