The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

  • A. Chabchoub
  • B. Kibler
  • C. Finot
  • G. Millot
  • M. Onorato
  • J. M. Dudley
  • A. V. Babanin

Organisaatiot

  • Swinburne University of Technology
  • Universite de Bourgogne
  • Universit'a di Rome Sapienza
  • Universite de Franche-Comte

Kuvaus

The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose-Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin-Feir index, i.e. a nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.

Yksityiskohdat

AlkuperäiskieliEnglanti
Sivut490-500
Sivumäärä11
JulkaisuANNALS OF PHYSICS
Vuosikerta361
TilaJulkaistu - 1 lokakuuta 2015
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 6981274