Projekteja vuodessa
Abstrakti
In this paper we study a problem of determining when entities are active based on their interactions with each other. We consider a set of entities V and a sequence of time-stamped edges E among the entities. Each edge (u, v, t) ∈ E denotes an interaction between entities u and v at time t. We assume an activity model where each entity is active during at most k time intervals. An interaction (u, v, t) can be explained if at least one of u or v are active at time t. Our goal is to reconstruct the activity intervals for all entities in the network, so as to explain the observed interactions. This problem, the network-untangling problem, can be applied to discover event timelines from complex entity interactions. We provide two formulations of the network-untangling problem: (i) minimizing the total interval length over all entities (sum version), and (ii) minimizing the maximum interval length (max version). We study separately the two problems for k= 1 and k> 1 activity intervals per entity. For the case k= 1 , we show that the sum problem is NP-hard, while the max problem can be solved optimally in linear time. For the sum problem we provide efficient algorithms motivated by realistic assumptions. For the case of k> 1 , we show that both formulations are inapproximable. However, we propose efficient algorithms based on alternative optimization. We complement our study with an evaluation on synthetic and real-world datasets, which demonstrates the validity of our concepts and the good performance of our algorithms.
Alkuperäiskieli | Englanti |
---|---|
Sivut | 213-247 |
Sivumäärä | 35 |
Julkaisu | Data Mining and Knowledge Discovery |
Vuosikerta | 35 |
Numero | 1 |
Varhainen verkossa julkaisun päivämäärä | 1 tammik. 2020 |
DOI - pysyväislinkit | |
Tila | Julkaistu - tammik. 2021 |
OKM-julkaisutyyppi | A1 Julkaistu artikkeli, soviteltu |
Sormenjälki
Sukella tutkimusaiheisiin 'The network-untangling problem: from interactions to activity timelines'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 3 Päättynyt
-
Adaptiivinen ja älykäs data
Gionis, A., Ordozgoiti Rubio, B., Zhang, G. & Muniyappa, S.
01/01/2018 → 30/06/2022
Projekti: Academy of Finland: Other research funding
-
Active knowledge discovery in graphs
Gionis, A., Aslay, C., Zhang, G., Ordozgoiti Rubio, B. & Xiao, H.
01/01/2018 → 31/12/2019
Projekti: Academy of Finland: Other research funding
-
Network structure from group response
Xiao, H., Gionis, A., Garimella, K., Vitale, F., Parotsidis, N., Zhang, G., Rozenshtein, P., Galbrun, E., Tatti, N., Scepanovic, S., Matakos, A. & Muniyappa, S.
01/09/2015 → 31/08/2019
Projekti: Academy of Finland: Other research funding