The Magni Human Motion Dataset : Accurate, Complex, Multi-Modal, Natural, Semantically-Rich and Contextualized

Tim Schreiter, Tiago Rodrigues de Almeida, Yufei Zhu, Eduardo Gutiérrez Maestro, Lucas Morillo-Mendez, Andrey Rudenko, Tomasz P. Kucner, Oscar Martinez Mozos, Martin Magnusson, Luigi Palmieri, Kai O. Arras, Achim Lilienthal

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsProfessional

Abstrakti

Rapid development of social robots stimulates active research in human motion modeling, interpretation and prediction, proactive collision avoidance, human-robot interaction and co-habitation in shared spaces. Modern approaches to this end require high quality datasets for training and evaluation. However, the majority of available datasets suffers from either inaccurate tracking data or unnatural, scripted behavior of the tracked people. This paper attempts to fill this gap by providing high quality tracking information from motion capture, eye-gaze trackers and on-board robot sensors in a semantically-rich environment. To induce natural behavior of the recorded participants, we utilise loosely scripted task assignment, which induces the participants navigate through the dynamic laboratory environment in a natural and purposeful way. The motion dataset, presented in this paper, sets a high quality standard, as the realistic and accurate data is enhanced with semantic information, enabling development of new algorithms which rely not only on the tracking information but also on contextual cues of the moving agents, static and dynamic environment. 
AlkuperäiskieliEnglanti
OtsikkoProceedings of the SIRRW-RoMan2022
KustantajaIEEE
Sivumäärä4
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiD3 Artikkeli ammatillisessa konferenssijulkaisussa
TapahtumaIEEE International Conference on Robot and Human Interactive Communication - Napoli, Italia
Kesto: 29 elok. 20222 syysk. 2022

Conference

ConferenceIEEE International Conference on Robot and Human Interactive Communication
LyhennettäRO-MAN
Maa/AlueItalia
KaupunkiNapoli
Ajanjakso29/08/202202/09/2022

Sormenjälki

Sukella tutkimusaiheisiin 'The Magni Human Motion Dataset : Accurate, Complex, Multi-Modal, Natural, Semantically-Rich and Contextualized'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä