@article{c158595beb484156a18eebcdacf4ba21,
title = "The JET hybrid scenario in Deuterium, Tritium and Deuterium-Tritium",
abstract = "The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasma current, and toroidal magnetic field choices and succeeded in solving the heat load challenges arising from 37 MW of injected power in the ITER like wall environment, keeping the radiation in the edge and core controlled, avoiding MHD instabilities and reaching high neutron rates. The Deuterium hybrid plasmas have been re-run in Tritium and methods have been found to keep the radiation controlled but not at high fusion performance probably due to time constraints. For the first time this scenario has been run in Deuterium-Tritium (50:50). These plasmas were re-optimised to have a radiation-stable H-mode entry phase, good impurity control through edge Ti gradient screening and optimised performance with fusion power exceeding 10 MW for longer than three alpha particle slow down times, 8.3 MW averaged over 5 s and fusion energy of 45.8 MJ.",
keywords = "D-T, hybrid scenario, isotope effects, magnetic fusion, Tritium",
author = "J. Hobirk and C. Challis and A. Kappatou and E. Lerche and D. Keeling and D. King and S. Aleiferis and E. Alessi and C. Angioni and F. Auriemma and M. Baruzzo and I. Belonohy and J. Bernardo and A. Boboc and I. Carvalho and P. Carvalho and F. Casson and A. Chomiczewska and J. Citrin and I. Coffey and N. Conway and D. Douai and E. Delabie and B. Eriksson and J. Eriksson and O. Ficker and A. Field and M. Fontana and J. Fontdecaba and L. Frassinetti and D. Frigione and D. Gallart and J. Garcia and M. Gelfusa and Z. Ghani and L. Giacomelli and E. Giovannozzi and C. Giroud and M. Goniche and W. Gromelski and S. Hacquin and C. Ham and N. Hawkes and R. Henriques and J. Hillesheim and H. Kumpulainen and S. Moradi and Schneider, {P. A.} and P. Siren and H. Sun and {JET Contributors}",
note = "Funding Information: The BSC part of this work has contributed through the Spanish National R&D Project PID2019-110854RB-I00 and the CIEMAT part through grant PID2021-127727OB-I00, funded through MCIN/AEI/10.13039/501100011033 and ERDF “A way of making Europe”. This scientific paper has been published as part of the international project co-financed by the Polish Ministry of Science and Higher Education within the programme called {\textquoteleft}PMW{\textquoteright} for 2018–2023. This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No. 101052200 - EUROfusion) and from the EPSRC [Grant Number EP/W006839/1]. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the ITER organization. Publisher Copyright: {\textcopyright} EURATOM 2023",
year = "2023",
month = nov,
doi = "10.1088/1741-4326/acde8d",
language = "English",
volume = "63",
journal = "Nuclear Fusion",
issn = "0029-5515",
publisher = "Institute of Physics Publishing ",
number = "11",
}