The fracture toughness of demi-regular lattices

Milad Omidi, Luc St-Pierre*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

22 Lataukset (Pure)

Abstrakti

The properties of lattices are strongly influenced by their nodal connectivity; yet, previous studies have focused mainly on topologies with a single vertex configuration. This work investigates the potential of demi-regular lattices, with two vertex configurations, to outperform existing topologies, such as triangular and kagome lattices. We used finite element simulations to predict the fracture toughness of three elastic-brittle demi-regular lattices under modes I, II, and mixed-mode loading. The fracture toughness of two demi-regular lattices scales linearly with relative density ρ¯, and outperforms a triangular lattice by 15% under mode I and 30% under mode II. The third demi-regular lattice has a fracture toughness KIc that scales with ρ¯ and matches the remarkable toughness of a kagome lattice. Finally, a kinematic matrix analysis revealed that topologies with KIc∝ρ¯ have periodic mechanisms and this may be a key feature explaining their high fracture toughness.

AlkuperäiskieliEnglanti
Artikkeli115686
Sivumäärä5
JulkaisuScripta Materialia
Vuosikerta237
DOI - pysyväislinkit
TilaJulkaistu - jouluk. 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'The fracture toughness of demi-regular lattices'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä