Abstrakti
Knowledge tracing is a method which enables approximation of a student's knowledge state using a Bayesian network for approximation. As the applications of this method increase, it is vital to understand the limits of this approximation. We are interested how well knowledge tracing performs when students' prior knowledge on the topic is extremely high or low. Our results indicate that the estimates become more erroneous when prior knowledge is extremely high (prior =0.90).
Alkuperäiskieli | Englanti |
---|---|
Otsikko | EDM 2014 Extended Proceedings |
Alaotsikko | Proceedings of the Workshops held at Educational Data Mining 2014, co-located with 7th International Conference on Educational Data Mining (EDM 2014), London, United Kingdom, July 4-7, 2014 |
Toimittajat | Sergio Gutierrez-Santos, Olga C. Santos |
Sivut | 146-150 |
Sivumäärä | 5 |
Tila | Julkaistu - 2014 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | International Conference on Educational Data Mining - London, Iso-Britannia Kesto: 4 heinäk. 2014 → 7 heinäk. 2014 Konferenssinumero: 7 |
Julkaisusarja
Nimi | CEUR workshop proceedings |
---|---|
Vuosikerta | 1183 |
ISSN (painettu) | 1613-0073 |
Conference
Conference | International Conference on Educational Data Mining |
---|---|
Lyhennettä | EDM |
Maa/Alue | Iso-Britannia |
Kaupunki | London |
Ajanjakso | 04/07/2014 → 07/07/2014 |