The aspect Bernoulli model: multiple causes of presences and absences

Ella Bingham, Ata Kaban, Mikael Fortelius

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

35 Lataukset (Pure)

Abstrakti

We present a probabilistic multiple cause model for the analysis of binary (0–1) data. A distinctive feature of the aspect Bernoulli (AB) model is its ability to automatically detect and distinguish between “true absences” and “false absences” (both of which are coded as 0 in the data), and similarly, between “true presences” and “false presences” (both of which are coded as 1). This is accomplished by specific additive noise components which explicitly account for such non-content bearing causes. The AB model is thus suitable for noise removal and data explanatory purposes, including omission/addition detection. An important application of AB that we demonstrate is data-driven reasoning about palaeontological recordings. Additionally, results on recovering corrupted handwritten digit images and expanding short text documents are also given, and comparisons to other methods are demonstrated and discussed.
AlkuperäiskieliEnglanti
Sivut55-78
JulkaisuPattern Analysis and Applications
Vuosikerta12
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 2009
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'The aspect Bernoulli model: multiple causes of presences and absences'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä