Tensorized Neural Layer Decomposition for 2-D DOA Estimation

Hang Zheng*, Chengwei Zhou, Sergiy A. Vorobyov, Zhiguo Shi

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

15 Lataukset (Pure)

Abstrakti

Existing matrix-based neural network for direction-of-arrival (DOA) estimation has to train a large amount of parameters proportional to the length of vectorized signal statistics, resulting in a heavy system overload. To address the problem, a tensorized neural layer decomposition-based neural network is proposed for 2-D DOA estimation. In particular, the covariance tensor of tensor signals is propagated to hidden state tensors. The feedforward propagation is formulated as an inverse Tucker decomposition, such that parameters in the tensorized neural layers are compressed into inverse Tucker factors. Accordingly, the tensorized backpropagation procedure is designed for network training. It is proved that the number of parameters is significantly reduced, which leads to a faster training process. Simulation results demonstrate that the proposed method reduces the number of trained parameters by more than 122,000 times compared to the matrix-based neural network while maintaining a moderate accuracy.

AlkuperäiskieliEnglanti
OtsikkoICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings
KustantajaIEEE
Sivumäärä5
ISBN (elektroninen)978-1-7281-6327-7
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Rhodes Island, Kreikka
Kesto: 4 kesäk. 202310 kesäk. 2023

Julkaisusarja

NimiICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Vuosikerta2023-June
ISSN (painettu)1520-6149

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
LyhennettäICASSP
Maa/AlueKreikka
KaupunkiRhodes Island
Ajanjakso04/06/202310/06/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Tensorized Neural Layer Decomposition for 2-D DOA Estimation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä