Taxonomic classification for living organisms using convolutional neural networks

Tutkimustuotos: Lehtiartikkeli

Tutkijat

  • Saed Khawaldeh
  • Usama Pervaiz
  • Mohammed Elsharnoby
  • Alaa Eddin Alchalabi
  • Nayel Al-Zubi

Organisaatiot

  • Aalto University
  • Al-Balqa Applied University
  • University of Cassino and Southern Lazio
  • Université de Bourgogne
  • University of Girona
  • Istanbul Sehir University

Kuvaus

Taxonomic classification has a wide-range of applications such as finding out more about evolutionary history. Compared to the estimated number of organisms that nature harbors, humanity does not have a thorough comprehension of to which specific classes they belong. The classification of living organisms can be done in many machine learning techniques. However, in this study, this is performed using convolutional neural networks. Moreover, a DNA encoding technique is incorporated in the algorithm to increase performance and avoid misclassifications. The algorithm proposed outperformed the state of the art algorithms in terms of accuracy and sensitivity, which illustrates a high potential for using it in many other applications in genome analysis.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli326
JulkaisuGenes
Vuosikerta8
Numero11
TilaJulkaistu - 17 marraskuuta 2017
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Lataa tilasto

Ei tietoja saatavilla

ID: 16524755