Abstrakti

Bayesian neural networks (BNNs) promise improved generalization under covariate shift by providing principled probabilistic representations of epistemic uncertainty. However, weight-based BNNs often struggle with high computational complexity of large-scale architectures and datasets. Node-based BNNs have recently been introduced as scalable alternatives, which induce epistemic uncertainty by multiplying each hidden node with latent random variables, while learning a point-estimate of the weights. In this paper, we interpret these latent noise variables as implicit representations of simple and domain-agnostic data perturbations during training, producing BNNs that perform well under covariate shift due to input corruptions. We observe that the diversity of the implicit corruptions depends on the entropy of the latent variables, and propose a straightforward approach to increase the entropy of these variables during training. We evaluate the method on out-of-distribution image classification benchmarks, and show improved uncertainty estimation of node-based BNNs under covariate shift due to input perturbations. As a side effect, the method also provides robustness against noisy training labels.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the 39th International Conference on Machine Learning
ToimittajatKamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, Sivan Sabato
KustantajaJMLR
Sivut21751-21775
Sivumäärä25
TilaJulkaistu - 17 heinäk. 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Machine Learning - Baltimore, Yhdysvallat
Kesto: 17 heinäk. 202223 heinäk. 2022
Konferenssinumero: 39

Julkaisusarja

NimiProceedings of Machine Learning Research
KustantajaPMLR
Vuosikerta162
ISSN (elektroninen)2640-3498

Conference

ConferenceInternational Conference on Machine Learning
LyhennettäICML
Maa/AlueYhdysvallat
KaupunkiBaltimore
Ajanjakso17/07/202223/07/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Tackling covariate shift with node-based Bayesian neural networks'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä