Systems driven intelligent decision support methods for ship collision and grounding prevention : Present status, possible solutions, and challenges

Mingyang Zhang*, Ghalib Taimuri, Jinfen Zhang, Di Zhang, Xinping Yan, Pentti Kujala, Spyros Hirdaris

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

2 Sitaatiot (Scopus)
12 Lataukset (Pure)

Abstrakti

Despite advancements in science and technology, ship collisions and groundings remain the most prevalent types of maritime accidents. Recent developments in accident prevention and mitigation methods have been bolstered by the rise of autonomous shipping, digital technologies, and Artificial Intelligence (AI). This paper provides an exhaustive review of the characteristics of fleets at risk over the past two decades, emphasizing the societal impacts of preventing collisions and groundings. It also delves into the key components of decision support systems from a ship's perspective and undertakes a systematic literature review on the foundations and applications of systems-driven decision support methods for ship collision and grounding prevention. The study covers risk analysis, damage evaluation, and ship motion prediction methods from 2002 to 2023. The conclusions indicate that modern ship science methods are increasingly valuable in ship design and maritime operations. Emerging multi-physics systems and AI-enabled predictive analytics show potential for future integration into intelligent decision support systems. The strategic research challenges include (1) underestimating the impacts of real operational conditions on ship safety, (2) the inherent limitations of static risk analysis and finite numerical methods, and (3) the need for rapid, probabilistic assessments of damage extents. The demands and trends suggest that leveraging big data analytics and rapid prediction methods, underpinned by digitalization and AI technologies, represents the most feasible way forward.

AlkuperäiskieliEnglanti
Artikkeli110489
Sivumäärä33
JulkaisuReliability Engineering and System Safety
Vuosikerta253
DOI - pysyväislinkit
TilaJulkaistu - tammik. 2025
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Systems driven intelligent decision support methods for ship collision and grounding prevention : Present status, possible solutions, and challenges'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.
  • FLARE: FLooding Accident REsponse

    Hirdaris, S. (Vastuullinen tutkija), Zhang, M. (Projektin jäsen) & Matusiak, J. (Projektin jäsen)

    31/05/201930/11/2022

    Projekti: EU: Framework programmes funding

Siteeraa tätä