Abstrakti
The chromatic index of a cubic graph is either 3 or 4. Edge-Kempe switching, which can be used to transform edge-colorings, is here considered for 3-edge-colorings of cubic graphs. Computational results for edge-Kempe switching of cubic graphs up to order 30 and bipartite cubic graphs up to order 36 are tabulated. Families of cubic graphs of orders 4n+2 and 4n+4 with 2n edge-Kempe equivalence classes are presented; it is conjectured that there are no cubic graphs with more edge-Kempe equivalence classes. New families of nonplanar bipartite cubic graphs with exactly one edge-Kempe equivalence class are also obtained. Edge-Kempe switching is further connected to cycle switching of Steiner triple systems, for which an improvement of the established classification algorithm is presented.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 112963 |
Sivumäärä | 11 |
Julkaisu | Discrete Mathematics |
Vuosikerta | 345 |
Numero | 9 |
DOI - pysyväislinkit | |
Tila | Julkaistu - syysk. 2022 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Switching 3-edge-colorings of cubic graphs'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Tietoaineistot
-
Dataset and code for Switching 3-edge-colorings of cubic graphs
Goedgebeur, J. (Creator) & Östergård, P. (Creator), Zenodo, 2021
DOI - pysyväislinkki: 10.5281/zenodo.4707696
Tietoaineisto: Dataset