Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity

Fa-Hsuan Lin, Panu T. Vesanen, Yi-Cheng Hsu, Jaakko O. Nieminen, Koos C.J. Zevenhoven, Juhani Dabek, Lauri T. Parkkonen, Juha Simola, Antti I. Ahonen, Risto J. Ilmoniemi

    Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

    6 Sitaatiot (Scopus)
    159 Lataukset (Pure)

    Abstrakti

    Ultra-low-field (ULF) MRI (B0 = 10–100 µT) typically suffers from a low signal-to-noise ratio (SNR). While SNR can be improved by pre-polarization and signal detection using highly sensitive superconducting quantum interference device (SQUID) sensors, we propose to use the inter-dependency of the k-space data from highly parallel detection with up to tens of sensors readily available in the ULF MRI in order to suppress the noise. Furthermore, the prior information that an image can be sparsely represented can be integrated with this data consistency constraint to further improve the SNR. Simulations and experimental data using 47 SQUID sensors demonstrate the effectiveness of this data consistency constraint and sparsity prior in ULF-MRI reconstruction.
    AlkuperäiskieliEnglanti
    Artikkelie61652
    Sivut1-6
    JulkaisuPloS one
    Vuosikerta8
    Numero4
    DOI - pysyväislinkit
    TilaJulkaistu - 2013
    OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

    Sormenjälki Sukella tutkimusaiheisiin 'Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä