Supersolutions to nonautonomous Choquard equations in general domains

Asadollah Aghajani, Juha Kinnunen*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

7 Sitaatiot (Scopus)
26 Lataukset (Pure)

Abstrakti

We consider the nonlocal quasilinear elliptic problem: - Δ m u (x) = H (x) ((I α ∗ (Q f (u))) (x)) β g (u (x)) in ω, -{\Delta }_{m}u\left(x)=H\left(x){(\left({I}_{\alpha }∗ \left(Qf\left(u)))\left(x))}^{\beta }g\left(u\left(x))\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega, where ω \Omega is a smooth domain in R N {{\mathbb{R}}}^{N}, β ≥ 0 \beta \ge 0, I α {I}_{\alpha }, 0 < α < N 0\lt \alpha \lt N, stands for the Riesz potential, f, g: [ 0, a) → [ 0, ∞) f,g:\left[0,a)\to \left[0,\infty), 0 < a ≤ ∞ 0\lt a\le \infty, are monotone nondecreasing functions with f (s), g (s) > 0 f\left(s),g\left(s)\gt 0 for s > 0 s\gt 0, and H, Q: ω → R H,Q:\Omega \to {\mathbb{R}} are nonnegative measurable functions. We provide explicit quantitative pointwise estimates on positive weak supersolutions. As an application, we obtain bounds on extremal parameters of the related nonlinear eigenvalue problems in bounded domains for various nonlinearities f f and g g such as e u, (1 + u) p {e}^{u},{\left(1+u)}^{p}, and (1 - u) - p {\left(1-u)}^{-p}, p > 1 p\gt 1. We also discuss the Liouville-type results in unbounded domains.

AlkuperäiskieliEnglanti
Artikkeli20230107
JulkaisuAdvances in Nonlinear Analysis
Vuosikerta12
Numero1
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Supersolutions to nonautonomous Choquard equations in general domains'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä