Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

  • A. Slunyaev
  • E. Pelinovsky
  • A. Sergeeva
  • A. Chabchoub
  • N. Hoffmann
  • M. Onorato
  • N. Akhmediev

Organisaatiot

  • R.Y. Alekseev Nizhny Novgorod State Technical University
  • Johannes Kepler University of Linz
  • Swinburne University of Technology
  • Imperial College London
  • Hamburg University of Technology
  • Universit'a di Rome Sapienza
  • Australian National University

Kuvaus

The rogue wave solutions (rational multibreathers) of the nonlinear Schrödinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli012909
JulkaisuPhysical Review E
Vuosikerta88
Numero1
TilaJulkaistu - 19 heinäkuuta 2013
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 6981661