Subword Representations Successfully Decode Brain Responses to Morphologically Complex Written Words

Tero Hakala, Tiina Lindh-Knuutila, Annika Hulten, Minna Lehtonen, Riitta Salmelin*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

41 Lataukset (Pure)

Abstrakti

This study extends the idea of decoding word-evoked brain activations using a corpus-semantic vector space to multimorphemic words in the agglutinative Finnish language. The corpus-semantic models are trained on word segments, and decoding is carried out with word vectors that are composed of these segments. We tested several alternative vector-space models using different segmentations: no segmentation (whole word), linguistic morphemes, statistical morphemes, random segmentation, and character-level 1-, 2- and 3-grams, and paired them with recorded MEG responses to multimorphemic words in a visual word recognition task. For all variants, the decoding accuracy exceeded the standard word-label permutation-based significance thresholds at 350–500 ms after stimulus onset. However, the critical segment-label permutation test revealed that only those segmentations that were morphologically aware reached significance in the brain decoding task. The results suggest that both whole-word forms and morphemes are represented in the brain and show that neural decoding using corpus-semantic word representations derived from compositional subword segments is applicable also for multimorphemic word forms. This is especially relevant for languages with complex morphology, because a large proportion of word forms are rare and it can be difficult to find statistically reliable surface representations for them in any large corpus.
AlkuperäiskieliEnglanti
Sivut844-863
Sivumäärä20
JulkaisuNeurobiology of Language
Vuosikerta5
Numero4
DOI - pysyväislinkit
TilaJulkaistu - 11 syysk. 2024
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Rahoitus

Riitta Salmelin, Academy of Finland (https://dx.doi.org/10.13039/501100002341), Award ID: LASTU, 256887. Riitta Salmelin, Academy of Finland (https://dx.doi.org/10.13039 /501100002341), Award ID: 255349. Riitta Salmelin, Academy of Finland (https://dx.doi.org /10.13039/501100002341), Award ID: 315553. Minna Lehtonen, Academy of Finland (https:// dx.doi.org/10.13039/501100002341), Award ID: 288880. Annika Hultén, Academy of Finland (https://dx.doi.org/10.13039/501100002341), Award ID: 287474. Tiina Lindh-Knuutila, Aalto Brain Center. Riitta Salmelin, Sigrid Juséliuksen Säätiö (https://dx.doi.org/10.13039 /501100006306). Riitta Salmelin, Academy of Finland, Award ID: 355407.

Sormenjälki

Sukella tutkimusaiheisiin 'Subword Representations Successfully Decode Brain Responses to Morphologically Complex Written Words'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä