Abstrakti
We present a structured output prediction approach for classifying potential anti-cancer drugs. Our QSAR model takes as input a description of a molecule and predicts the activity against a set of cancer cell lines in one shot. Statistical dependencies between the cell lines are encoded by a Markov network that has cell lines as nodes and edges represent similarity according to an auxiliary dataset. Molecules are represented via kernels based on molecular graphs. Margin-based learning is applied to separate correct multilabels from incorrect ones. The performance of the multilabel classification method is shown in our experiments with NCI-Cancer data containing the cancer inhibition potential of drug-like molecules against 59 cancer cell lines. In the experiments, our method outperforms the state-of-the-art SVM method.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Pattern Recognition in Bioinformatics |
Alaotsikko | 5th IAPR International Conference, PRIB 2010, Nijmegen, The Netherlands, September 22-24, 2010. Proceedings |
Toimittajat | Tjeerd M. H. Dijkstra, Evgeni Tsivtsivadze, Elena Marchiori, Tom Heskes |
Kustantaja | Springer |
Sivut | 38-49 |
ISBN (elektroninen) | 978-3-642-16001-1 |
ISBN (painettu) | 978-3-642-16000-4 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2010 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IAPR International Conference on Pattern Recognition in Bioinformatics - Nijmegen, Alankomaat Kesto: 22 syysk. 2010 → 24 syysk. 2010 Konferenssinumero: 5 |
Julkaisusarja
Nimi | Lecture Notes in Computer Science |
---|---|
Kustantaja | Springer |
Vuosikerta | 6282 |
ISSN (painettu) | 0302-9743 |
Conference
Conference | IAPR International Conference on Pattern Recognition in Bioinformatics |
---|---|
Lyhennettä | PRIB |
Maa/Alue | Alankomaat |
Kaupunki | Nijmegen |
Ajanjakso | 22/09/2010 → 24/09/2010 |