Stochastic Optimization of Vector Quantization Methods in Application to Speech and Image Processing

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

1 Sitaatiot (Scopus)
140 Lataukset (Pure)

Abstrakti

Vector quantization (VQ) methods have been used in a wide range of applications for speech, image, and video data. While classic VQ methods often use expectation maximization, in this paper, we investigate the use of stochastic optimization employing our recently proposed noise substitution in vector quantization technique. We consider three variants of VQ including additive VQ, residual VQ, and product VQ, and evaluate their quality, complexity and bitrate in speech coding, image compression, approximate nearest neighbor search, and a selection of toy examples. Our experimental results demonstrate the trade-offs in accuracy, complexity, and bitrate such that using our open source implementations and complexity calculator, the best vector quantization method can be chosen for a particular problem.
AlkuperäiskieliEnglanti
OtsikkoInternational Conference on Acoustics, Speech, and Signal Processing
KustantajaIEEE
Sivumäärä5
ISBN (elektroninen)978-1-7281-6327-7
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Rhodes Island, Kreikka
Kesto: 4 kesäk. 202310 kesäk. 2023

Julkaisusarja

NimiProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
ISSN (elektroninen)2379-190X

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
LyhennettäICASSP
Maa/AlueKreikka
KaupunkiRhodes Island
Ajanjakso04/06/202310/06/2023

Sormenjälki

Sukella tutkimusaiheisiin 'Stochastic Optimization of Vector Quantization Methods in Application to Speech and Image Processing'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä