Stochastic Characterization of outdoor Terahertz Channels Through Mixture Gaussian Processes

Evangelos N. Papasotiriou*, Alexandros Apostolos A. Boulogeorgos, Mar Francis De Guzman, Katsuyuki Haneda, Angeliki Alexiou

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

2 Sitaatiot (Scopus)
98 Lataukset (Pure)

Abstrakti

This contribution aims at experimentally validating the suitability of Gaussian mixture (GM) distributions to capture the stochastic characteristics of outdoor terahertz (THz) wireless channels. In this direction, we employ a machine learning enabled approach, based on the expectation maximization algorithm, in order to identify the suitable number of Gaussian distributions as well as their corresponding parameters that result to an acceptable fit. The fitting accuracy of the GMs to the empirical distributions is evaluated by means of the Kolmogorov-Smirnov (KS), Kullback-Leibler (KL), root-mean-square-error (RMSE) and R2 fitting accuracy tests. These tests verify the suitability of GMs to model the small-scale fading channel amplitude of outdoor THz wireless links. In addition, the fitting accuracy results indicate that as the number of mixtures increases the resulting GMs achieve a better fit to the empirical data.

AlkuperäiskieliEnglanti
Otsikko2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2022
KustantajaIEEE
Sivumäärä6
ISBN (elektroninen)978-1-6654-8053-6
DOI - pysyväislinkit
TilaJulkaistu - 2022
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Symposium on Personal, Indoor and Mobile Radio Communications - Virtual, Online, Japani
Kesto: 12 syysk. 202215 syysk. 2022

Julkaisusarja

NimiIEEE International Symposium on Personal, Indoor, and Mobile Radio Communications
ISSN (painettu)2166-9570
ISSN (elektroninen)2166-9589

Conference

ConferenceIEEE International Symposium on Personal, Indoor and Mobile Radio Communications
LyhennettäPIMRC
Maa/AlueJapani
KaupunkiVirtual, Online
Ajanjakso12/09/202215/09/2022

Sormenjälki

Sukella tutkimusaiheisiin 'Stochastic Characterization of outdoor Terahertz Channels Through Mixture Gaussian Processes'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä