Steam turbine vibration fault diagnosis based on particle swarm optimization clustering

Fu Rong Liu*, Hong Wei Wang, Xiao Zhi Gao

*Tämän työn vastaava kirjoittaja

    Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

    4 Sitaatiot (Scopus)

    Abstrakti

    A novel fuzzy clustering algorithm: PFCM was proposed based on the fusion of particle swarm optimization (PSO) and fuzzy c-means clustering (FCM). The conventional FCM has the two drawbacks of sensitivity to initialization and easily being trapped into local optima, due to the gradient descent approach used. With the features of global optimization and fast convergence, the hybrid algorithm presented can overcome these shortcomings and yield the optimal clustering performance. The new data clustering technique provided was also applied in the vibration fault diagnosis of steam turbine. Computer simulations demonstrate that compared with FCM, the proposed PFCM has a superior fault diagnosis capability.

    AlkuperäiskieliEnglanti
    Sivut9-12
    Sivumäärä4
    JulkaisuZhendong yu Chongji/Journal of Vibration and Shock
    Vuosikerta29
    Numero8
    TilaJulkaistu - 1 elok. 2010
    OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

    Sormenjälki

    Sukella tutkimusaiheisiin 'Steam turbine vibration fault diagnosis based on particle swarm optimization clustering'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

    Siteeraa tätä