Stay On-Topic: Generating Context-specific Fake Restaurant Reviews

Mika Juuti, Bo Sun, Tatsuya Mori, N. Asokan

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

17 Sitaatiot (Scopus)
314 Lataukset (Pure)

Abstrakti

Automatically generated fake restaurant reviews are a threat to online review systems. Recent research has shown that users have difficulties in detecting machine-generated fake reviews hiding among real restaurant reviews. The method used in this work (char-LSTM ) has one drawback: it has difficulties staying in context, i.e. when it generates a review for specific target entity, the resulting review may contain phrases that are unrelated to the target, thus increasing its detectability. In this work, we present and evaluate a more sophisticated technique based on neural machine translation (NMT) with which we can generate reviews that stay on-topic. We test multiple variants of our technique using native English speakers on Amazon Mechanical Turk. We demonstrate that reviews generated by the best variant have almost optimal undetectability (class-averaged F-score 47%). We conduct a user study with skeptical users and show that our method evades detection more frequently compared to the state-of-the-art (average evasion 3.2/4 vs 1.5/4) with statistical significance, at level {\alpha} = 1% (Section 4.3). We develop very effective detection tools and reach average F-score of 97% in classifying these. Although fake reviews are very effective in fooling people, effective automatic detection is still feasible.
AlkuperäiskieliEnglanti
OtsikkoComputer Security - 23rd European Symposium on Research in Computer Security, ESORICS 2018, Proceedings
KustantajaSpringer
Sivut132-151
Sivumäärä20
ISBN (painettu)9783319990729
DOI - pysyväislinkit
TilaJulkaistu - 2018
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Symposium on Research in Computer Security - Barcelona, Espanja
Kesto: 3 syysk. 20187 syysk. 2018
Konferenssinumero: 23
https://esorics2018.upc.edu/program.do
https://esorics2018.upc.edu/

Julkaisusarja

NimiLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
KustantajaSpringer
Vuosikerta11098 LNCS
ISSN (painettu)0302-9743
ISSN (elektroninen)1611-3349

Conference

ConferenceEuropean Symposium on Research in Computer Security
LyhennettäESORICS
Maa/AlueEspanja
KaupunkiBarcelona
Ajanjakso03/09/201807/09/2018
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Stay On-Topic: Generating Context-specific Fake Restaurant Reviews'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä