Statistics of orthogonality catastrophe events in localised disordered lattices

F. Cosco*, M. Borrelli, E. M. Laine, S. Pascazio, A. Scardicchio, S. Maniscalco

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

5 Sitaatiot (Scopus)
162 Lataukset (Pure)

Abstrakti

We address the phenomenon of statistical orthogonality catastrophe in insulating disordered systems. In more detail, we analyse the response of a system of non-interacting fermions to a local perturbation induced by an impurity. By inspecting the overlap between the pre- and post-quench many-body ground states we fully characterise the emergent statistics of orthogonality events as a function of both the impurity position and the coupling strength. We consider two well-known one-dimensional models, namely the Anderson and Aubry-André insulators, highlighting the arising differences. Particularly, in the Aubry-André model the highly correlated nature of the quasi-periodic potential produces unexpected features in how the orthogonality catastrophe occurs. We provide a quantitative explanation of such features via a simple, effective model. We further discuss the incommensurate ratio approximation and suggest a viable experimental verification in terms of charge transfer statistics and interferometric experiments using quantum probes.

AlkuperäiskieliEnglanti
Artikkeli073041
Sivut1-11
JulkaisuNew Journal of Physics
Vuosikerta20
Numero7
DOI - pysyväislinkit
TilaJulkaistu - 1 heinäk. 2018
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Statistics of orthogonality catastrophe events in localised disordered lattices'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä