State-space Gaussian Process for Drift Estimation in Stochastic Differential Equations

Zheng Zhao, Filip Tronarp, Roland Hostettler, Simo Särkkä

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

6 Sitaatiot (Scopus)
157 Lataukset (Pure)

Abstrakti

This paper is concerned with the estimation of unknown drift functions of stochastic differential equations (SDEs) from observations of their sample paths. We propose to formulate this as a non-parametric Gaussian process regression problem and use an Itô–Taylor expansion for approximating the SDE. To address the computational complexity problem of Gaussian process regression, we cast the model in an equivalent state-space representation, such that (non-linear) Kalman filters and smoothers can be used. The benefit of these methods is that computational complexity scales linearly with respect to the number of measurements and hence the method remains tractable also with large amounts of data. The overall complexity of the proposed method is O(N logN), where N is the number of measurements, due to the requirement of sorting the input data. We evaluate the performance of the proposed method using simulated data as well as with realdata applications to sunspot activity and electromyography.
AlkuperäiskieliEnglanti
OtsikkoProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020
KustantajaIEEE
Sivut5295-5299
Sivumäärä5
ISBN (elektroninen)9781509066315
DOI - pysyväislinkit
TilaJulkaistu - toukok. 2020
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE International Conference on Acoustics, Speech, and Signal Processing - Virtual conference, Barcelona, Espanja
Kesto: 4 toukok. 20208 toukok. 2020
Konferenssinumero: 45

Julkaisusarja

NimiProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing
ISSN (painettu)1520-6149
ISSN (elektroninen)2379-190X

Conference

ConferenceIEEE International Conference on Acoustics, Speech, and Signal Processing
LyhennettäICASSP
Maa/AlueEspanja
KaupunkiBarcelona
Ajanjakso04/05/202008/05/2020
MuuVirtual conference

Sormenjälki

Sukella tutkimusaiheisiin 'State-space Gaussian Process for Drift Estimation in Stochastic Differential Equations'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä