Abstrakti
We formulate approximate Bayesian inference in non-conjugate temporal and spatio-temporal Gaussian process models as a simple parameter update rule applied during Kalman smoothing. This viewpoint encompasses most inference schemes, including expectation propagation (EP), the classical (Extended, Unscented, etc.) Kalman smoothers, and variational inference. We provide a unifying perspective on these algorithms, showing how replacing the power EP moment matching step with linearisation recovers the classical smoothers. EP provides some benefits over the traditional methods via introduction of the so-called cavity distribution, and we combine these benefits with the computational efficiency of linearisation, providing extensive empirical analysis demonstrating the efficacy of various algorithms under this unifying framework. We provide a fast implementation of all methods in JAX.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | Proceedings of the 37th International Conference on Machine Learning |
Sivut | 10270-10281 |
Tila | Julkaistu - 13 heinäkuuta 2020 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisuussa |
Tapahtuma | International Conference on Machine Learning - Vienna, Itävalta Kesto: 12 heinäkuuta 2020 → 18 heinäkuuta 2020 Konferenssinumero: 37 |
Julkaisusarja
Nimi | Proceedings of Machine Learning Research |
---|---|
Kustantaja | PMLR |
Vuosikerta | 119 |
ISSN (elektroninen) | 2640-3498 |
Conference
Conference | International Conference on Machine Learning |
---|---|
Lyhennettä | ICML |
Maa/Alue | Itävalta |
Kaupunki | Vienna |
Ajanjakso | 12/07/2020 → 18/07/2020 |