Stability and moment estimates for the stochastic singular Φ-Laplace equation

Florian Seib, Wilhelm Stannat, Jonas M. Tölle

Tutkimustuotos: LehtiartikkeliArticleScientific

Abstrakti

We study stability, long-time behavior and moment estimates for stochastic evolution equations with additive Wiener noise and with singular drift given by a divergence type quasilinear diffusion operator which may not necessarily exhibit a homogeneous diffusivity. Our results cover the singular $p$-Laplace and, more generally, singular $\Phi$-Laplace equations with zero Dirichlet boundary conditions. We obtain improved moment estimates and quantitative convergence rates of the ergodic semigroup to the unique invariant measure, classified in a systematic way according to the degree of local degeneracy of the potential at the origin. We obtain new concentration results for the invariant measure and establish maximal dissipativity of the associated Kolmogorov operator. In particular, we recover the results for the curve shortening flow in the plane by Es-Sarhir, von Renesse and Stannat, NoDEA 16(9), 2012.
AlkuperäiskieliEnglanti
Sivumäärä23
JulkaisuarXiv.org
TilaJätetty - 5 maalisk. 2021
OKM-julkaisutyyppiB1 Artikkeli tiedelehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Stability and moment estimates for the stochastic singular Φ-Laplace equation'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä