SPONGE: Sequence Planning with Deformable-ON-Rigid Contact Prediction from Geometric Features

Tran Nguyen Le, Fares Abu-Dakka, Ville Kyrki

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

Abstrakti

Planning robotic manipulation tasks, especially those that involve interaction between deformable and rigid objects, is challenging due to the complexity in predicting such interactions. We introduce SPONGE, a sequence planning pipeline powered by a deep learning-based contact prediction model for contacts between deformable and rigid bodies under interactions. The contact prediction model is trained on synthetic data generated by a developed simulation environment to learn the mapping from point-cloud observation of a rigid target object and the pose of a deformable tool, to 3D representation of the contact points between the two bodies. We experimentally evaluated the proposed approach for a dish cleaning task both in simulation and on a real \panda with real-world objects. The experimental results demonstrate that in both scenarios the proposed planning pipeline is capable of generating high-quality trajectories that can accomplish the task by achieving more than 90\% area coverage on different objects of varying sizes and curvatures while minimizing travel distance. Code and video are available at: \url{this https URL}.
AlkuperäiskieliEnglanti
OtsikkoIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
KustantajaIEEE
Sivut10596-10603
Sivumäärä8
ISBN (elektroninen)978-1-6654-9190-7
DOI - pysyväislinkit
TilaJulkaistu - 13 jouluk. 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaIEEE/RSJ International Conference on Intelligent Robots and Systems
- Detroit, Yhdysvallat
Kesto: 1 lokak. 20235 lokak. 2023

Julkaisusarja

Nimi Proceedings of the IEEE/RSJ international conference on intelligent robots and systems
ISSN (elektroninen)2153-0866

Conference

ConferenceIEEE/RSJ International Conference on Intelligent Robots and Systems
LyhennettäIROS
Maa/AlueYhdysvallat
KaupunkiDetroit
Ajanjakso01/10/202305/10/2023

Sormenjälki

Sukella tutkimusaiheisiin 'SPONGE: Sequence Planning with Deformable-ON-Rigid Contact Prediction from Geometric Features'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä