Projekteja vuodessa
Abstrakti
This article is concerned with spectro-temporal (i.e., time varying spectrum) analysis of ECG signals for application in atrial fibrillation (AF) detection. We propose a Bayesian spectro-temporal representation of ECG signal using state-space model and Kalman filter. The 2D spectro-temporal data are then classified by a densely connected convolutional networks (DenseNet) into four different classes: AF, non-AF normal rhythms (Normal), non-AF abnormal rhythms (Others), and noisy segments (Noisy). The performance of the proposed algorithm is evaluated and scored with the PhysioNet/Computing in Cardiology (CinC) 2017 dataset. The experiment results shows that the proposed method achieves the overall F1 score of 80.2%, which is in line with the state-of-the-art algorithms. In addition, the proposed spectro-temporal estimation approach outperforms standard time-frequency analysis methods, that is, short-time Fourier transform, continuous wavelet transform, and autoregressive spectral estimation for AF detection.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2018 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2018 |
Toimittajat | Nelly Pustelnik, Zheng-Hua Tan, Zhanyu Ma, Jan Larsen |
Kustantaja | IEEE |
Sivumäärä | 6 |
ISBN (elektroninen) | 978-1-5386-5477-4 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2018 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Workshop on Machine Learning for Signal Processing - Aalborg, Tanska Kesto: 17 syysk. 2018 → 20 syysk. 2018 Konferenssinumero: 28 |
Julkaisusarja
Nimi | IEEE International Workshop on Machine Learning for Signal Processing |
---|---|
Kustantaja | IEEE |
ISSN (painettu) | 2161-0363 |
ISSN (elektroninen) | 2161-0371 |
Workshop
Workshop | IEEE International Workshop on Machine Learning for Signal Processing |
---|---|
Lyhennettä | MLSP |
Maa/Alue | Tanska |
Kaupunki | Aalborg |
Ajanjakso | 17/09/2018 → 20/09/2018 |
Sormenjälki
Sukella tutkimusaiheisiin 'Spectro-Temporal ECG Analysis for Atrial Fibrillation Detection'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
Robust Computational ECG Methods for Automated Diagnosis of Cardiac Diseases from Long-Term Recordings
Palva, L., Suotsalo, K., Särkkä, S., Bahrami Rad, A., Hostettler, R., Tronarp, F., Sarmavuori, J., Zhao, Z. & Karvonen, T.
01/06/2016 → 31/12/2018
Projekti: Business Finland: Other research funding