Spatio-temporal Gaussian process models for extended and group object tracking with irregular shapes

Tutkimustuotos: Lehtiartikkelivertaisarvioitu

Tutkijat

  • Waqas Aftab
  • Roland Hostettler
  • Allan De Freitas
  • Mahnaz Arvaneh
  • Lyudmila Mihaylova

Organisaatiot

  • University of Sheffield

Kuvaus

Extended object tracking has become an integral part of many autonomous systems during the last two decades. For the first time, this paper presents a generic spatio-temporal Gaussian process (STGP) for tracking an irregular and non-rigid extended object. The complex shape is represented by key points and their parameters are estimated both in space and time. This is achieved by a factorization of the power spectral density function of the STGP covariance function. A new form of the temporal covariance kernel is derived with the theoretical expression of the filter likelihood function. Solutions to both the filtering and the smoothing problems are presented. A thorough evaluation of the performance in a simulated environment shows that the proposed STGP approach outperforms the state-of-the-art GP extended Kalman filter approach [N. Wahlström and E. Özkan, 'Extended target tracking using Gaussian processes, IEEE Transactions on Signal Processing,' vol. 63, no. 16, pp. 4165-4178, Aug. 2015] with up to 90% improvement in the accuracy in position, 95% in velocity and 7% in the shape, while tracking a simulated asymmetric non-rigid object. The tracking performance improvement for a non-rigid irregular real object is up to 43% in position, 68% in velocity, 10% in the recall, and 115% in the precision measures.

Yksityiskohdat

AlkuperäiskieliEnglanti
Artikkeli8601344
Sivut2137-2151
Sivumäärä15
JulkaisuIEEE Transactions on Vehicular Technology
Vuosikerta68
Numero3
Varhainen verkossa julkaisun päivämäärä2019
TilaJulkaistu - 1 maaliskuuta 2019
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

ID: 31067102