Spatial Inference Network: Indoor Proximity Detection via Multiple Hypothesis Testing

Martin Gölz, Luca Okubo Baudenbacher, Abdelhak M. Zoubir, Visa Koivunen*

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

12 Lataukset (Pure)

Abstrakti

Spatial inference is an important task in large-scale wireless sensor networks, the Internet of Things, radio spectrum monitoring, and smart cities. In this paper, we extend and adopt our spatial multiple hypothesis testing approach with false discovery rate control to a real-world spatial inference sensor system detecting the presence of people in indoor settings. The developed inference method is data driven, using empirical statistics and conformal p-values instead of assuming specific probability models. The approach has both, low computational complexity and energy efficient communication, hence expanding the lifespan of the network. Each sensor computes local p-values and communicates them to a fusion center. This performs the actual testing and identifies the regions where the alternative hypotheses are in place. The reliable performance of the method is demonstrated using real-world measured data acquired by an indoor wireless sensor network.

AlkuperäiskieliEnglanti
Otsikko32nd European Signal Processing Conference, EUSIPCO 2024 - Proceedings
KustantajaEuropean Association For Signal and Image Processing
Sivut2052-2056
Sivumäärä5
ISBN (elektroninen)978-94-645936-1-7
TilaJulkaistu - 2024
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Signal Processing Conference - Lyon, Ranska
Kesto: 26 elok. 202430 elok. 2024
Konferenssinumero: 32

Julkaisusarja

NimiEuropean Signal Processing Conference
ISSN (painettu)2219-5491

Conference

ConferenceEuropean Signal Processing Conference
LyhennettäEUSIPCO
Maa/AlueRanska
KaupunkiLyon
Ajanjakso26/08/202430/08/2024

Sormenjälki

Sukella tutkimusaiheisiin 'Spatial Inference Network: Indoor Proximity Detection via Multiple Hypothesis Testing'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä