Sparsity-Aware Block Diagonal Representation for Subspace Clustering

Aylin Taştan, Michael Muma, Esa Ollila, Abdelhak M. Zoubir

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

22 Lataukset (Pure)

Abstrakti

A block diagonally structured affinity matrix is an informative prior for subspace clustering which embeds the data points in a union of low-dimensional subspaces. Structuring a block diagonal matrix can be challenging due to the determination of an appropriate sparsity level, especially when outliers and heavy-tailed noise obscure the underlying subspaces. We propose a new sparsity-aware block diagonal representation (SABDR) method that robustly estimates the appropriate sparsity level by leveraging upon the geometrical analysis of the low-dimensional structure in spectral clustering. Specifically, we derive the Euclidean distance between the embeddings of different clusters to develop a computationally efficient density-based clustering algorithm. In this way, the sparsity parameter selection problem is re-formulated as a robust approximation of target between-clusters distances. Comprehensive experiments using real-world data demonstrate the effectiveness of SABDR in different subspace clustering applications.

AlkuperäiskieliEnglanti
Otsikko31st European Signal Processing Conference, EUSIPCO 2023 - Proceedings
KustantajaEuropean Signal Processing Conference (EUSIPCO)
Sivut1594-1598
Sivumäärä5
ISBN (elektroninen)978-9-4645-9360-0
DOI - pysyväislinkit
TilaJulkaistu - 2023
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaEuropean Signal Processing Conference - Helsinki, Suomi
Kesto: 4 syysk. 20238 syysk. 2023
Konferenssinumero: 31
https://eusipco2023.org/

Julkaisusarja

NimiEuropean Signal Processing Conference
ISSN (painettu)2219-5491

Conference

ConferenceEuropean Signal Processing Conference
LyhennettäEUSIPCO
Maa/AlueSuomi
KaupunkiHelsinki
Ajanjakso04/09/202308/09/2023
www-osoite

Sormenjälki

Sukella tutkimusaiheisiin 'Sparsity-Aware Block Diagonal Representation for Subspace Clustering'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä