Abstrakti
We present SCCA-HSIC, a method for finding sparse non-linear multivariate relations in high-dimensional settings by maximizing the Hilbert-Schmidt Independence Criterion (HSIC). We propose efficient optimization algorithms using a projected stochastic gradient and Nyström approximation of HSIC. We demonstrate the favourable performance of SCCA-HSIC over competing methods in detecting multivariate non-linear relations both in simulation studies, with varying numbers of related variables, noise variables, and samples, as well as in real datasets.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 2018 IEEE International Conference on Data Mining, ICDM 2018 |
Kustantaja | IEEE |
Sivut | 1278-1283 |
Sivumäärä | 6 |
ISBN (elektroninen) | 9781538691588 |
ISBN (painettu) | 9781538691595 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2018 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | IEEE International Conference on Data Mining - Singapore, Singapore Kesto: 17 marrask. 2018 → 20 marrask. 2018 |
Conference
Conference | IEEE International Conference on Data Mining |
---|---|
Lyhennettä | ICDM |
Maa/Alue | Singapore |
Kaupunki | Singapore |
Ajanjakso | 17/11/2018 → 20/11/2018 |