Abstrakti
We introduce a new class of sparse multi-prototype classifiers, designed to combine the computational advantages of sparse predictors with the non-linear power of prototype-based classification techniques. This combination makes sparse multi-prototype models especially well-suited for resource constrained computational platforms, such as the IoT devices. We cast our supervised learning problem as a convex-concave saddle point problem and design a provably-fast algorithm to solve it. We complement our theoretical analysis with an empirical study that demonstrates the merits of our methodology.
Alkuperäiskieli | Englanti |
---|---|
Otsikko | 34th Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018 |
Toimittajat | Ricardo Silva, Amir Globerson, Amir Globerson |
Kustantaja | Association for Uncertainty in Artificial Intelligence |
Sivut | 704-714 |
Sivumäärä | 11 |
ISBN (elektroninen) | 9781510871601 |
Tila | Julkaistu - 2018 |
OKM-julkaisutyyppi | A4 Artikkeli konferenssijulkaisussa |
Tapahtuma | Conference on Uncertainty in Artificial Intelligence - Monterey, Yhdysvallat Kesto: 6 elok. 2018 → 10 elok. 2018 |
Conference
Conference | Conference on Uncertainty in Artificial Intelligence |
---|---|
Lyhennettä | UAI |
Maa/Alue | Yhdysvallat |
Kaupunki | Monterey |
Ajanjakso | 06/08/2018 → 10/08/2018 |