Sparse latent space policy search

Kevin Sebastian Luck, Joni Pajarinen, Erik Berger, Ville Kyrki, Heni Ben Amor

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

11 Sitaatiot (Scopus)

Abstrakti

Computational agents often need to learn policies that involve many control variables, e.g., a robot needs to control several joints simultaneously. Learning a policy with a high number of parameters, however, usually requires a large number of training samples. We introduce a reinforcement learning method for sample efficient policy search that exploits correlations between control variables. Such correlations are particularly frequent in motor skill learning tasks. The introduced method uses Variational Inference to estimate policy parameters, while at the same time uncovering a low-dimensional latent space of controls. Prior knowledge about the task and the structure of the learning agent can be provided by specifying groups of potentially correlated parameters. This information is then used to impose sparsity constraints on the mapping between the high-dimensional space of controls and a lowerdimensional latent space. In experiments with a simulated bi-manual manipulator, the new approach effectively identifies synergies between joints, performs efficient low-dimensional policy search, and outperforms state-of-the-art policy search methods.

AlkuperäiskieliEnglanti
OtsikkoProceedings of the 30th AAAI Conference on Artificial Intelligence, AAAI 2016
KustantajaAAAI Press
Sivut1911-1918
Sivumäärä8
ISBN (elektroninen)9781577357605
TilaJulkaistu - 2016
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaAAAI Conference on Artificial Intelligence - Phoenix, Yhdysvallat
Kesto: 12 helmik. 201617 helmik. 2016
Konferenssinumero: 30

Julkaisusarja

NimiProceedings of the AAAI Conference on Artificial Intelligence
KustantajaAAAI PRESS
ISSN (painettu)2159-5399
ISSN (elektroninen)2374-3468

Conference

ConferenceAAAI Conference on Artificial Intelligence
LyhennettäAAAI
Maa/AlueYhdysvallat
KaupunkiPhoenix
Ajanjakso12/02/201617/02/2016

Sormenjälki

Sukella tutkimusaiheisiin 'Sparse latent space policy search'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä