Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations

Simone Rossi*, Markus Heinonen, Edwin Bonilla, Zheyang Shen, Maurizio Filippone

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: Artikkeli kirjassa/konferenssijulkaisussaConference article in proceedingsScientificvertaisarvioitu

79 Lataukset (Pure)

Abstrakti

Variational inference techniques based on inducing variables provide an elegant framework for scalable posterior estimation in Gaussian process (GP) models. Besides enabling scalability, one of their main advantages over sparse approximations using direct marginal likelihood maximization is that they provide a robust alternative for point estimation of the inducing inputs, i.e. the location of the inducing variables. In this work we challenge the common wisdom that optimizing the inducing inputs in the variational framework yields optimal performance. We show that, by revisiting old model approximations such as the fully-independent training conditionals endowed with powerful sampling-based inference methods, treating both inducing locations and GP hyper-parameters in a Bayesian way can improve performance significantly. Based on stochastic gradient Hamiltonian Monte Carlo, we develop a fully Bayesian approach to scalable gp and deep gp models, and demonstrate its state-of-the-art performance through an extensive experimental campaign across several regression and classification problems.

AlkuperäiskieliEnglanti
Otsikko24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS)
ToimittajatA Banerjee, K Fukumizu
KustantajaMicrotome Publishing
Sivumäärä11
TilaJulkaistu - 2021
OKM-julkaisutyyppiA4 Artikkeli konferenssijulkaisussa
TapahtumaInternational Conference on Artificial Intelligence and Statistics - Virtual, Online
Kesto: 13 huhtik. 202115 huhtik. 2021
Konferenssinumero: 24

Julkaisusarja

NimiProceedings of Machine Learning Research
KustantajaMICROTOME PUBLISHING
Vuosikerta130
ISSN (painettu)2640-3498

Conference

ConferenceInternational Conference on Artificial Intelligence and Statistics
LyhennettäAISTATS
KaupunkiVirtual, Online
Ajanjakso13/04/202115/04/2021

Sormenjälki

Sukella tutkimusaiheisiin 'Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä