Abstrakti
Deep neural networks (NNs) are known to lack uncertainty estimates and struggle to incorporate new data. We present a method that mitigates these issues by converting NNs from weight space to function space, via a dual parameterization. Importantly, the dual parameterization enables us to formulate a sparse representation that captures information from the entire data set. This offers a compact and principled way of capturing uncertainty and enables us to incorporate new data without retraining whilst retaining predictive performance. We provide proof-of-concept demonstrations with the proposed approach for quantifying uncertainty in supervised learning on UCI benchmark tasks.
Alkuperäiskieli | Englanti |
---|---|
Sivumäärä | 6 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 2023 |
OKM-julkaisutyyppi | Ei sovellu |
Tapahtuma | Workshop on Duality Principles for Modern Machine Learning - Honolulu, Yhdysvallat Kesto: 29 heinäk. 2023 → 29 heinäk. 2023 https://icml.cc/virtual/2023/workshop/21496 |
Workshop
Workshop | Workshop on Duality Principles for Modern Machine Learning |
---|---|
Maa/Alue | Yhdysvallat |
Kaupunki | Honolulu |
Ajanjakso | 29/07/2023 → 29/07/2023 |
www-osoite |