Solving cardinality constrained mean-variance portfolio problems via MILP

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

4 Sitaatiot (Scopus)

Abstrakti

Controlling the number of active assets (cardinality of the portfolio) in a mean-variance portfolio problem is practically important but computationally demanding. Such task is ordinarily a mixed integer quadratic programming (MIQP) problem. We propose a novel approach to reformulate the problem as a mixed integer linear programming (MILP) problem for which computer codes are readily available. For numerical tests, we find cardinality constrained minimum variance portfolios of stocks in S&P500. A significant gain in robustness and computational effort by our MILP approach relative to MIQP is reported. Similarly, our MILP approach also competes favorably against cardinality constrained portfolio optimization with risk measures CVaR and MASD. For illustrations, we depict portfolios in a portfolio map where cardinality provides a third criterion in addition to risk and return. Fast solution allows an interactive search for a desired portfolio.
AlkuperäiskieliEnglanti
Sivut47-59
JulkaisuAnnals of Operations Research
Vuosikerta254
Numero1-2
Varhainen verkossa julkaisun päivämäärä2017
DOI - pysyväislinkit
TilaJulkaistu - heinäkuuta 2017
OKM-julkaisutyyppiA1 Julkaistu artikkeli, soviteltu

Sormenjälki Sukella tutkimusaiheisiin 'Solving cardinality constrained mean-variance portfolio problems via MILP'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

  • Siteeraa tätä