Projekteja vuodessa
Abstrakti
We study the basic question of characterizing which boundary homeomorphisms of the unit sphere can be extended to a Sobolev homeomorphism of the interior in 3D space. While the planar variants of this problem are well-understood, completely new and direct ways of constructing an extension are required in 3D. We prove, among other things, that a Sobolev homeomorphism φ:R2→ontoR2 in Wloc1,p(R2,R2) for some p∈[1,∞) admits a homeomorphic extension h:R3→ontoR3 in Wloc1,q(R3,R3) for [Formula presented]. Such an extension result is nearly sharp, as the bound [Formula presented] cannot be improved due to the Hölder embedding. The case q=3 gains an additional interest as it also provides an L1-variant of the celebrated Beurling-Ahlfors quasiconformal extension result.
Alkuperäiskieli | Englanti |
---|---|
Artikkeli | 110371 |
Julkaisu | Journal of Functional Analysis |
Vuosikerta | 286 |
Numero | 9 |
DOI - pysyväislinkit | |
Tila | Julkaistu - 1 toukok. 2024 |
OKM-julkaisutyyppi | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä |
Sormenjälki
Sukella tutkimusaiheisiin 'Sobolev homeomorphic extensions from two to three dimensions'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.Projektit
- 1 Päättynyt
-
QUAMAP: Quasiconformal Methods in Analysis and Applications
Astala, K. (Vastuullinen tutkija)
27/08/2019 → 30/04/2021
Projekti: EU: ERC grants