Smith forms of matrices in Companion Rings, with group theoretic and topological applications

Vanni Noferini*, Gerald Williams

*Tämän työn vastaava kirjoittaja

Tutkimustuotos: LehtiartikkeliArticleScientificvertaisarvioitu

39 Lataukset (Pure)

Abstrakti

Let R be a commutative ring and g(t)∈R[t] a monic polynomial. The commutative ring of polynomials f(Cg) in the companion matrix Cg of g(t), where f(t)∈R[t], is called the Companion Ring of g(t). Special instances include the rings of circulant matrices, skew-circulant matrices, pseudo-circulant matrices, or lower triangular Toeplitz matrices. When R is an Elementary Divisor Domain, we develop new tools for computing the Smith forms of matrices in Companion Rings. In particular, we obtain a formula for the second last non-zero determinantal divisor, we provide an f(Cg)↔g(Cf) swap theorem, and a composition theorem. When R is a principal ideal domain we also obtain a formula for the number of non-unit invariant factors. By applying these to families of circulant matrices that arise as relation matrices of cyclically presented groups, in many cases we compute the groups' abelianizations. When the group is the fundamental group of a three dimensional manifold, this provides the homology of the manifold. In other cases we obtain lower bounds for the rank of the abelianization and record consequences for finiteness or solvability of the group, or for the Heegaard genus of a corresponding manifold.

AlkuperäiskieliEnglanti
Sivut372-404
Sivumäärä33
JulkaisuLinear Algebra and Its Applications
Vuosikerta708
Varhainen verkossa julkaisun päivämäärä27 jouluk. 2024
DOI - pysyväislinkit
TilaJulkaistu - 1 maalisk. 2025
OKM-julkaisutyyppiA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Sormenjälki

Sukella tutkimusaiheisiin 'Smith forms of matrices in Companion Rings, with group theoretic and topological applications'. Ne muodostavat yhdessä ainutlaatuisen sormenjäljen.

Siteeraa tätä